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Abstract
Nonlinear optical susceptibilities and Raman scattering spectra of the ferroelectric phases of
BaTiO3 and PbTiO3 are computed using a first-principles approach based on density functional
theory and taking advantage of a recent implementation based on the nonlinear response
formalism and the 2n + 1 theorem. These two prototypical ferroelectric compounds were
chosen to demonstrate the accuracy of the Raman calculation based both on their complexity
and their technological importance. The computation of the Raman scattering intensities has
been performed not only for the transverse optical modes, but also for the longitudinal optical
ones. The agreement between the measured and computed Raman spectra of these prototypical
ferroelectrics is remarkable for both the frequency position and the intensity of Raman lines.
This agreement presently demonstrates the state-of-the-art in the computation of Raman
responses on one of the most complex systems, ferroelectrics, and constitutes a step forward in
the reliable prediction of their electro-optical responses.

1. Introduction

Raman spectroscopy is a powerful experimental tool,
nowadays routinely applied for the characterization of material
properties [1–7]. The interpretation of the positions and
intensities of Raman lines is usually not straightforward and
calls for accurate theoretical support. While density functional
theory (DFT) is routinely used for the determination of
vibrational frequencies, its application to compute Raman
intensities remains challenging, mainly because of the huge
computational effort required in the calculation of the
Raman susceptibility tensors. For this reason, theoretical
investigations have usually been based on empirical or
semi-empirical approaches, such as the bond polarizability
model [8–10]. These models generally rely on a description
of the dielectric response in terms of contributions of
individual bonds and their empirical parameters are obtained
by considering experimental data of representative systems.
The main advantage of these models over first-principles
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approaches is their ease of implementation, their low
computational cost and their ability to tackle large and complex
structures. However, these models are usually less accurate and
their parameters are rarely transferable [8]. Furthermore, in the
case of ABO3 compounds with a rather ionic bonding, their
applications are not straightforward.

In this paper, we investigate the nonlinear optical
coefficients and the Raman spectra of the BaTiO3 and PbTiO3

prototypical ferroelectrics using DFT and taking advantage
of a recent implementation based on the nonlinear response
formalism and the 2n + 1 theorem [11]. The computation
of the intensity of the Raman lines is performed not only for
the transverse optical (TO) modes, but also for the longitudinal
optical (LO) ones.

The motivation in the investigation of BaTiO3 and PbTiO3

prototypical ferroelectrics is threefold. First, Raman spectra
of BaTiO3 and PbTiO3 have never been reported in the
literature using first-principles methods. The good agreement
between their calculated spectra and the experimental ones
demonstrates the accuracy of the computational method in
complex oxide materials. Then, we have calculated the
rhombohedral phase of BaTiO3 for which few experimental
data are available [12, 13], and none of them on the
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monocrystal. Finally, our method provides access to the
microscopic parameters involved in the Raman response and
allows us to clarify the quite different behavior of both these
compounds.

This paper is organized as follows. Sections 2 and 3,
respectively, describe the formalism and the computational
parameters used to compute the Raman spectra of BaTiO3

and PbTiO3 ferroelectric phases using first principles. In
sections 4–8, we respectively present the structure, the
nonlinear optical susceptibility tensors, the electronic dielectric
and dynamical charge tensors, a phonon analysis including
LO–TO splittings, and the derivatives of the linear dielectric
susceptibility tensor with respect to atomic displacements.
These quantities are all the ingredients required to compute
the Raman spectra. Section 9 is devoted to the comparison
between our calculated Raman spectra of BaTiO3 and PbTiO3

and the experimental ones. Finally, section 10 discusses
the transferability of the calculated Raman quantities and
section 11 concludes the paper.

2. Theoretical section

In this section, we give the formalism that we have used for
the calculation of Raman activities. We only focus on first-
order processes, which involve a single-phonon excitation.
The momentum conservation imposes that only phonons of
wavevectors, q, close to the center of the Brillouin zone can
be excited. In practice, adopting the dipole approximation, we
only consider zone-center phonons (q = 0) and account for the
dependence on the direction of q resulting from the long-range
nature of the Coulomb field in polar materials.

2.1. Dynamical matrix

In the limit q → 0, the dynamical matrix, D, can be expressed
as the sum of an analytical part (AN) and a non-analytical part
(NA) [14]:

Dαβ,κκ ′(q → 0) = DAN
αβ,κκ ′(q = 0) + DNA

αβ,κκ ′(q → 0), (1)

where the (α, β) and (κ, κ ′) indices run over the Cartesian
directions and the atoms in the primitive unit cell, respectively.
The analytical part corresponds to the second-order derivatives
of the energy with respect to atomic displacements at q =
0 under the condition of vanishing macroscopic electric
field. The second term is due to the long-range electrostatic
interactions in polar crystals. It is at the origin of the so-
called LO–TO splitting and can be computed from knowledge
of the Born effective charges, Z∗, and the electronic dielectric
tensor, ε∞, as described in [14]. The phonon frequencies, ωm ,
and the eigendisplacement vectors, Um(ακ), of the mth zone-
center phonon mode are solutions of the following generalized
eigenvalue problem:

∑

β,κ ′
Dαβ,κκ ′Um(βκ ′) = Mκω

2
mUm(ακ), (2)

where Mκ is the mass of the κ th atom. As a convention, we
choose the eigendisplacement vectors to be normalized as

∑

α,κ

MκUm(ακ)Un(ακ) = δmn . (3)

2.2. Nonresonant Raman scattering

The nonresonant Raman scattering efficiency in a given
direction, with a frequency between ωd and ωd + dωd , and
within a solid angle d�, is given for a Stokes process by [15]

d2S

d� dωd
= ω4

d

16π2c4
[B(ω) + 1]h̄

∑

i, j,k,l

vivk Ii jkl(ω)w jwl, (4)

where ω = ω0 − ωd and

Ii jkl(ω) =
∑

m

a

i j(m)akl(m)

1

2ωm
[δ(ω − ωm) − δ(ω + ωm)].

(5)
In these equations, (i, j, k, l) indices denote the Cartesian
components, the asterisk symbolizes the complex conjugation,
c is the speed of light in the medium, h̄ is the reduced Planck
constant, ω0 (resp. ωd ) is the frequency of incident (resp.
scattered) light, v (resp. w) is the polarization unit vector of
the incident (resp. scattered) light, and B(ω) is the Bose factor.
The Raman susceptibility tensor is defined as

ai j(m) = √
�0

∑

κ,γ

πκ
i j,γ Um(γ κ), (6)

where the sum runs over all atoms κ and space directions γ , �0

is the unit cell volume and π̃ is a third-rank tensor describing
the changes of the linear dielectric susceptibility induced by an
individual atomic displacement defined as

πκ
i j,γ = ∂χ

(1)
i j

∂τκγ

∣∣∣∣
0

, (7)

where τκγ corresponds to the displacement of the κ th atom in
the direction γ .

For TO phonons (E = 0, where E is the electric field), π̃

can be computed as a mixed third-order derivative of the energy
functional, F , with respect to an electric field, twice, and to
an atomic displacement under the condition of zero electric
field [11]:

πκ
i j,γ

∣∣
E=0

= − 6

�0
F τκγ EiE j . (8)

For the case of LO phonons (D = 0, where D is the electric
displacement vector) with wavevector q → 0 in a polar
crystal, equation (6) must additionally take into account the
effect of the macroscopic electric field generated by the lattice
polar vibration. This field enters into the computation of the
Raman susceptibilities at two levels. On the one hand, it gives
rise to the non-analytical part of the dynamical matrix that
modifies the frequencies and eigenvectors with respect to pure
TO phonons. On the other hand, the electric field induces
an additional change in the dielectric susceptibility tensor
related to the nonlinear optical coefficients χ

(2)
i jk . Thus, for LO

phonons, equation (8) has to be modified as follows [16]:

πκ
i j,γ

∣∣
D=0

= πκ
i j,γ

∣∣
E=0

− 8π

�0

∑
l Z∗

γ l(κ)ql∑
l,l′ qlε

∞
ll′ ql′

∑

l

χ
(2)
i jl ql . (9)

Thus, the Raman calculation requires several ingredients,
such as the vibrational frequencies and eigenmodes obtained
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Figure 1. Atomic displacements at the transition from the cubic to the tetragonal phase of BaTiO3 (a) and PbTiO3 (b). Arrows indicate the
direction of the atomic displacements taking place at the phase transition when the A-atoms are chosen as reference. Amplitudes of the
displacements are reported in table 2.

(This figure is in colour only in the electronic version)

from the diagonalization of D, as well as the Z∗, ε∞, χ(2)

and π tensors. All these quantities should be in relative
good agreement with the experimental ones to have a reliable
prediction on the Raman spectra. In the next sections, all these
quantities will be computed, discussed and confronted with the
experimental results, when available.

3. Computational details

First-principles calculations were performed within the local
density approximation (LDA) to density functional theory
as implemented in the ABINIT package [17]. We used
highly transferable Teter pseudopotentials [18]. Ba (5s2,
5p6, 6s2), Pb (5d10, 6s2, 6p2), Ti (3s2, 3p6, 3d2, 4s2) and
O (2s2, 2p4) electrons were treated as valence states in the
construction of the pseudopotentials. The self-consistent
cycles converged within a tolerance of 10−15 Ha on the
potential residual. The wavefunction was expanded in plane
waves up to a kinetic energy cutoff of 55 Ha. Integrals over the
Brillouin zone were replaced by sums over a 10 × 10 × 10
mesh of special k-points according to the Monkhorst–Pack
scheme [19]. Both this energy cutoff and k-point mesh were
sufficient to reach convergence of all the quantities required for
a Raman calculation. The dynamical matrix (yielding phonon
frequencies and eigendisplacements), as well as the Z∗ and
ε∞ tensors, were computed within a variational approach to
density functional perturbation theory.

4. Structures

At high enough temperatures, both BaTiO3 and PbTiO3

crystallize in the centrosymmetric cubic perovskite structure
of Pm3̄m symmetry and five atoms per unit cell (see
figure 1). As the temperature is lowered, BaTiO3 undergoes

a sequence of three ferroelectric phase transitions. Around
403 K, it transforms to a tetragonal structure (P4mm) with a
spontaneous polarization along the 〈100〉 direction, as shown
in figure 1(a). This phase is stable until about 278 K where
there is a transformation to a phase of orthorhombic symmetry
(Pmm2) with a spontaneous polarization along the 〈110〉
direction. The last phase transition arises around 183 K. The
low-temperature structure of BaTiO3 is rhombohedral (P3m1)
and the polarization of this phase is aligned along the 〈111〉
direction. In contrast to BaTiO3, PbTiO3 undergoes a unique
phase transition around 763 K to a tetragonal P4mm phase (see
figure 1(b)).

In the following, the BaTiO3 and PbTiO3 tetragonal phase
will be first studied. The comparison of these phases will allow
us to investigate the effects of the substitution of Ba atoms
by Pb atoms on their Raman spectra. Then, the case of the
BaTiO3 rhombohedral ferroelectric phase will be investigated
because: (i) it is the phase thermodynamically stable of
BaTiO3, (ii) a few experimental Raman studies are devoted to
this phase [12, 13] mainly due to its low-temperature structure
and (iii) only one theoretical article is reported in the literature
about its phonon investigations [20].

For all three ferroelectric structures, we worked at the
experimental lattice parameters, which usually lead to a
better comparison with experimental data at finite temperature.
Internal atomic position relaxations were performed using the
Broyden–Fletcher–Goldfarb–Shanno algorithm [21] until the
maximum residual force on the atoms was less than 6 ×
10−6 Ha/bohr. The atomic positions of these ferroelectric
phases are reported in table 1. The Ba atom has been chosen as
the reference and remains located at the origin. In each phase,
the Ti atom is slightly displaced from its central position,
along the polar axis. Due to symmetry, two oxygen atoms
are equivalent in the tetragonal phases (O2 and O3) while all
the oxygens are equivalent in the rhombohedral phase. Results

3
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Table 1. Atomic positions (in reduced coordinates) of the BaTiO3

and PbTiO3 tetragonal phase and BaTiO3 rhombohedral phase.

Atom Tetragonal Rhombohedral

Ba/Pb (0, 0, 0) (0, 0, 0)

Ti ( 1
2 ,

1
2 , 1

2 + δTi) ( 1
2 + δTi,

1
2 + δTi,

1
2 + δTi)

O1 ( 1
2 ,

1
2 , 0 + δO1 ) ( 1

2 + δO1 ,
1
2 + δO1 , δO2 )

O2 ( 1
2 , 0, 1

2 + δO2 ) ( 1
2 + δO1 , δO2 ,

1
2 + δO2 )

O3 (0, 1
2 ,

1
2 + δO2 ) (δO2 ,

1
2 + δO1 ,

1
2 + δO1 )

Table 2. Calculated ferroelectric displacements of the BaTiO3 and
PbTiO3 tetragonal phase and BaTiO3 rhombohedral phase at
experimental lattice parameters (see notations in table 1), together
with the experimental ones. Lattice parameters are in Å, the
rhombohedral angle (αrh) is in degrees and the displacements are in
reduced coordinates.

BaTiO3 PbTiO3

Rhombohedral Tetragonal

Present Exp. [32] Present Exp. [32] Present Exp. [33]

a (arh) (4.003) 3.994 3.904
c (αrh) (89.84) 4.036 4.152

δTi −0.0105 −0.011 0.0136 0.0215 −0.0478 −0.040
δO1 0.0116 0.0129 −0.0273 −0.0233 −0.1205 −0.112
δO2 0.0183 0.0191 −0.0167 −0.0100 −0.1278 −0.112

of the relaxations giving the ferroelectric displacements with
respect to the paraelectric phases are reported in table 2, where
they are compared to experimental ones. The three sets of data
are found to be in excellent agreement both for the amplitude
of the ferroelectric displacements and their directions.

5. Nonlinear optical susceptibility tensor

The second-order nonlinear optical susceptibility, χ(2), is a
third-rank tensor related to the electronic response of the
system and which depends on the frequencies of the optical
electrical fields [22]. However, in the present context of
the 2n + 1 theorem applied within the LDA to (static) DFT,
we neglect the dispersion of χ(2) computing the electronic
response at zero frequency. Within these conditions, the χ(2)

tensor is related to a third-order derivative of a field-dependent
energy functional, F = E − �0E · P , where E , E and P
are, respectively, the total energy in zero field, the macroscopic
electric field and the macroscopic polarization [11]. As a
consequence, the χ(2) tensor satisfies Kleinman’s symmetry
condition [23] and its indices are therefore symmetric under
a permutation. In the following, and as usual in nonlinear
optics, we will report, instead of χ(2), the d tensor defined as
d = 1

2χ(2).
In the BaTiO3 and PbTiO3 tetragonal phase, the d tensor

has three independent elements and can be written as

di j =
( 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0

)
, (10)

Table 3. Calculated and experimental independent elements of the
nonlinear optical susceptibility tensor (in pm V−1) and electronic
dielectric tensor of ferroelectric BaTiO3 and PbTiO3 in their
tetragonal phase, and BaTiO3 in its rhombohedral phase.
Experimental data are from [34–38] for BaTiO3 and
from [31, 39, 40] for PbTiO3.

BaTiO3 PbTiO3

Rhombohedral Tetragonal

Present Present Exp. Present Exp.

d15 10.97 −11.09 −17.0 −27.69 −37.9
d31 10.97 −11.09 −15.7 −27.69 −42.8
d33 24.69 −18.31 −6.8 −5.69 +8.5
d22 −0.98

ε∞
xx 6.16 6.48 5.19 7.31 6.64

ε∞
zz 5.73 5.84 5.05 6.79 6.63

where the indices i and j denote the Cartesian components in
Voigt notation.

In the BaTiO3 rhombohedral phase, this tensor has
one additional independent element, d22, due to the lower
symmetry of this phase. Thus, the form of this tensor becomes

di j =
( 0 0 0 0 d15 −d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

)
. (11)

Kleinman’s symmetry rule allows us to reduce these tensors
to, respectively, two and three independent elements since in
this case we have d31 = d15. The calculated independent
elements of the d tensor in the BaTiO3 and PbTiO3 tetragonal
phase and in the BaTiO3 rhombohedral phase are given in
table 3, together with the experimental values only available
for the tetragonal phases. These calculated tensorial elements
are reported for the first time for these three ferroelectric
phases to the best of our knowledge. The calculated absolute
values of the nonlinear optical susceptibilities are in reasonable
agreement with the corresponding experimental values. All
calculated susceptibilities are found to be negative for the
tetragonal phases. In the case of BaTiO3, these results
correspond to the experimental observations. Nevertheless,
a positive value has been experimentally reported for d33 in
PbTiO3. Nonlinear optical susceptibilities are particularly
difficult to measure accurately and the values reported by
different authors are often in substantial disagreement [24].
Thus, as the sign is unambiguously defined in our calculations,
we suggest that the positive sign of d33 reported experimentally
might result from a wrong interpretation of the experimental
measurements.

6. Dielectric and Born effective charge tensors

Born effective charge (Z∗) and optical dielectric tensor (ε∞)
describe the strength of the coupling between the lattice
displacements and electrostatic fields in a polar insulator.
In particular, these quantities are essential to investigate
ferroelectric materials where phase transitions take place from
the competition of long-range Coulomb interactions and short-
range forces [20]. Applying a linear response approach,
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Table 4. Born effective charge tensors (Z∗
αβ(κ)) in the tetragonal and rhombohedral phases of BaTiO3 and in the PbTiO3 tetragonal phase

(in |e|).
BaTiO3 PbTiO3

κ Rhombohedral Tetragonal Tetragonal

Ba/Pb

(
2.783

2.783
2.737

) (
2.726

2.726
2.814

) (
3.730

3.730
3.339

)

Ti

(
6.608

6.608
5.765

) (
7.044

7.044
5.971

) (
6.090

6.090
5.327

)

O1

( −2.562 −0.984 0.647
−0.984 −3.699 1.121
0.733 1.269 −2.834

) (−2.024
−2.024

−4.836

) (−2.066
−2.066

−4.499

)

O2

(−2.149
−5.596

−1.974

) (−2.684
−5.070

−2.083

)

we have calculated Z∗ and ε∞ in the BaTiO3 and PbTiO3

tetragonal phase and in the BaTiO3 rhombohedral phase.
Our calculated tensorial components of Z∗ related to the
asymmetric unit of these three ferroelectric phases are reported
in table 4 and are in agreement with previous density functional
calculations [25].

As usual in the class of ABO3 materials, the amplitude
of some tensorial elements of Z∗ significantly deviates from
their nominal value expected in a purely ionic picture. In
addition, we observe that the anomalous effective charges
on Ba or Pb atoms are smaller than the anomalous effective
charges on Ti or O atoms, when considering a displacement
of the latter along Ti–O bonds. The amplitude of Z∗ in these
materials can be explained from their electronic structure as
interpreted within the Harrison bond orbital model [26]: the
Ba atom in BaTiO3 and, to a much lower extent, the Pb atom
in PbTiO3 are close to a fully ionized configuration whereas
there is a partly covalent interaction between Ti and O. During
an atomic displacement, the parameters that determine the
covalent interactions between Ti 3d and O 2p atomic orbitals
(the hopping integrals) vary. Thus, this variation produces a
dynamical charge transfer between Ti and O atoms, which is at
the origin of the anomalous effective charges of these atoms.

The calculated ε∞ in the BaTiO3 and PbTiO3 tetragonal
phase and in the BaTiO3 rhombohedral phase are reported in
table 3 where they are compared to the available experimental
data. Due to the symmetry of these three ferroelectric phases,
ε∞ is diagonal and assumes different values for parallel and
perpendicular directions to the optical axis (z axis). We
observe a significant overestimate of the calculated tensorial
elements of ε∞ with respect to the experimental ones, as
usual in DFT. This problem has been previously discussed
in the literature [27, 28] and has been related to the lack
of polarization dependence of local (LDA) and quasi-local
(GGA) exchange–correlation functionals. In spite of this error
on the absolute value, the evolutions of ε∞ are, in general,
qualitatively well described by LDA or GGA calculations. We
observe that ε∞ is always lower along the polar axis, as is also
the case for Z∗. No experimental data was reported for the
rhombohedral phase.

7. Vibrational properties

The zone-center optical phonon modes of the BaTiO3

and PbTiO3 tetragonal phase can be respectively classified,
according to their irreducible representations, into 4A1 ⊕
B1 ⊕ 5E. The irreducible representation of the BaTiO3

rhombohedral phase is exactly the same except for the B1

mode which must be replaced by an A2 mode. One A1

mode and one E mode are uniform translational modes. The
A1 and E modes are both Raman-and infrared-active, the B1

mode is only Raman-active and the A2 mode is silent. The
nondegenerate A1 modes are polarized along the optical axis,
whereas the doubly degenerate E modes are perpendicularly
polarized to this axis.

At the � point, the macroscopic electric field splits the
infrared active modes into TO and LO modes. The LO–
TO splitting of the E modes occurs for q vectors orthogonal
to the z axis, while the E modes remain degenerate at the
E(TO) frequencies for q parallel to the z axis. Similarly, the
frequencies for A1(TO) and A1(LO) modes are obtained by
diagonalizing the full dynamical matrix with q orthogonal and
parallel to the z axis, respectively.

Tables 5 and 6, respectively, report our calculated
phonon frequencies and eigendisplacement vectors of the
BaTiO3 and PbTiO3 tetragonal phase. Our calculated phonon
frequencies of the BaTiO3 rhombohedral phase are also
reported in table 5 with, to the best of our knowledge,
the only one density functional calculation provided in
the literature. No experimental phonon of this phase
recorded from a monocrystal exists in the literature. Our
computed frequencies have been obtained from the equilibrium
geometry at the experimental lattice parameters. We observe
that our theoretical frequencies are close to those reported
experimentally and theoretically in the literature, with relative
errors generally smaller than 10%. The differences between
the theoretical approaches are attributed to the different
equilibrium structures related to the different unit cell volume
used.

5
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Table 5. Calculated and experimental frequencies (in cm−1) of the TO and LO phonon modes of the BaTiO3 and PbTiO3 tetragonal phase
and BaTiO3 rhombohedral phase. Experimental data obtained by Raman spectroscopy when available.

BaTiO3 PbTiO3

Rhombohedral Tetragonal

Present Calc.a [20] Present Exp. [41] Exp. [30] Present Exp. [30] Exp. [31]

A1 TO1 167 168 161 178 176 151 148 149
LO1 178 180 180 189 189 194
TO2 259 265 302 276 275 357 362 359
LO2 461 462 452 471 471 442 465
TO3 512 505 507 515 518 653 650 647
LO3 676 702 705 725 720 791 795

E TO1 163 161 161i 38 78 89 87
LO1 174 173 162 180 179 117 130 128
TO2 210 205 167 180 179 199 220 219
LO2 293 293 284 308 308 269 290 289
TO3 293 293 284 308 307 269 290 289
LO3 441 438 444 466 467 416 440 441
TO4 470 461 457 498 488 482 508 505
LO4 687 725 641 722 708 655 720 687

B1/A2 277 274 287 304 303 283 289

a Calculation performed at optimized lattice parameters.

Table 6. Calculated eigendisplacement vectors U (in bohr) of the TO phonon modes of the BaTiO3 and PbTiO3 tetragonal phase according to
the normalization convention defined in equation (3) (masses in au). E and A1 modes are respectively polarized along the x and z axes. The
labels of the atoms and modes correspond to those defined in tables 1 and 5, respectively.

BaTiO3 PbTiO3

Ba Ti O1 O2 O3 Pb Ti O1 O2 O3

E(TO1) 0.0020 0.0963 −0.0721 −0.0831 −0.1503 0.0377 −0.0557 −0.1222 −0.1073 −0.0916
E(TO2) 0.0546 −0.0812 −0.0773 −0.0816 −0.0672 0.0094 −0.1168 0.0445 0.1222 0.0602
E(TO3) 0.0007 0.0026 −0.1829 0.1703 −0.0012 0.0040 −0.0276 0.1973 −0.1432 −0.0237
E(TO4) 0.0018 −0.0269 0.1165 0.1251 −0.1764 0.0015 0.0094 0.0578 0.1106 −0.2159
A1(TO1) 0.0544 −0.0667 −0.0833 −0.0918 −0.0918 0.0389 −0.0760 −0.0949 −0.0910 −0.0910
A1(TO2) 0.0061 −0.1097 0.0699 0.1031 0.1031 0.0024 −0.0921 −0.0253 0.1349 0.1349
A1(TO3) 0.0008 0.0101 −0.2154 0.0889 0.0889 0.0021 −0.0577 0.2226 −0.0383 −0.0383

8. π tensors

In the BaTiO3 and PbTiO3 tetragonal phase, the π tensors take
a very simple form due to the high symmetry position of the
atoms in these structures, as shown in table 7. For each atom
in the unit cell, these tensorial elements are determined by five
numbers denoted a, b, c, d and e, and in the case of Ba, Pb,
Ti and O1 atoms, the number of these independent elements
is even smaller because a = b and c = d . In contrast, due
to the lower symmetry position of the atoms in the BaTiO3

rhombohedral phase, the π tensors do not have a simple form
and have six independent elements to be calculated for Ba and
Ti atoms, and eighteen for O1 atoms.

Table 8 reports the independent elements of the π tensor
for the TO phonon modes of BaTiO3 and PbTiO3 in their
tetragonal phase, whereas those associated with the BaTiO3

rhombohedral phase are reported in table 9. Only the atoms
constituting the asymmetric unit of these three ferroelectric
phases have been reported. π tensors for the other atoms of
the unit cell can be determined by symmetry operations. We
observe that the absolute values of the π elements for Ba and
Pb atoms are significantly smaller than their corresponding
values for the Ti or O atoms when considering a displacement

Table 7. πκ
i j,γ tensor symmetry of Ba, Pb, Ti and O atoms in the

BaTiO3 and PbTiO3 tetragonal phase. x , y and z denote the direction
of the atomic displacement, γ . The rows and columns of the matrices
correspond to the indexes i and j .

x y z
( · · a

· · ·
a · ·

) ( · · ·
· · b
· b ·

) (
c · ·
· d ·
· · e

)

of the latter along Ti–O bonds. A similar behavior has
been observed and discussed for Z∗ in section 6. Thus, our
calculations point out that atoms with a giant Z∗ are also those
which exhibit the largest π .

In order to clarify this correlation, we can remember that
the derivatives of the linear optical susceptibility with respect
to an atomic displacement can be alternatively expressed as
derivatives of Z∗ with respect to an electric field:

πκ
i j,γ = ∂χ

(1)
i j

∂τκγ

= 1

�0

∂ Z∗
γ j(κ)

∂Ei
. (12)

In this class of materials, the anomalous Z∗ arises from

6
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Figure 2. Evolution of the amplitude of Z∗(Ti) in the 〈111〉 direction
(in |e|) from the cubic (λ = 0) to the rhombohedral (λ = 1) phase.
The distortion of the cubic unit cell has been neglected.

Table 8. Independent elements of πκ
i j,γ tensor (in bohr−1) related to

the asymmetric unit of the BaTiO3 and PbTiO3 in their tetragonal
phase for TO modes (see notations in table 7).

κ BaTiO3 PbTiO3

Ba/Pb a, b −0.0039 −0.0265
c, d −0.0065 −0.0826
e 0.0218 −0.0485

Ti a, b −0.0873 −0.1405
c, d −0.1288 −0.1561
e −0.3093 −0.1276

O1 a, b 0.0335 0.0620
c, d 0.1206 0.1924
e 0.2462 0.1783

O2 a −0.0030 −0.0240
b 0.0606 0.1289
c −0.0063 −0.0362
d 0.0210 0.0825
e 0.0207 −0.0011

the fact that the O 2p and Ti 3d orbital hybridization is
strongly sensitive to atomic displacements [25, 26]. It is
worth noticing that this effect is strongly nonlinear and that
Z∗ is strongly sensitive to atomic displacement: as a general
rule in ABO3 compounds, Z∗ is significantly less anomalous
in the low symmetry phase than in the cubic perovskite
reference structure (see figure 2). The present study shows
that anomalous Z∗ are not only sensitive to perturbations like
atomic displacements, but also to other types of perturbation
such as an electric field. In addition, the amplitude of the π

elements depends on the way the dynamical charge transfer is
affected by an electric field. In the case of Ba and Pb atoms,
the charge transfer is close to zero and, because of the ionic
configuration of these atoms, it is only slightly affected by
an electric field. By contrast, because of the partly covalent
interactions between Ti and O atoms, the charge transfer
between these atoms is more sensitive to an electric field. The
amplitude of the π elements can therefore be interpreted from
similar arguments as the amplitude of Z∗, and both Z∗ and π

will scale similarly.

9. Raman spectra of prototypical ferroelectrics

Now, we have computed all the quantities required for the
calculation of the Raman spectra of BaTiO3 and PbTiO3

in their tetragonal phases and BaTiO3 in its rhombohedral
phase. These quantities have been compared to the available
experimental ones and are found to be in relatively good
agreement. So, we can expect a reliable prediction of the
calculated Raman spectra of these materials.

As discussed in section 2.2, the Raman scattering
efficiencies can be computed from the projection of the Raman
susceptibility tensors, ai j(m), on the polarization vectors of
the incoming and scattered photons (equation (4)). The form
of these Raman tensors depends on the crystal symmetry.
Following Loudon’s notation [29], the Raman susceptibility
tensors of the A1 and B1 modes are given by

A1(z) =
( a · ·

· a ·
· · b

)
, and B1 =

( c · ·
· −c ·
· · ·

)
.

(13)
In contrast, the Raman tensors of the E modes are different
between the tetragonal and rhombohedral phases. For the
BaTiO3 and PbTiO3 tetragonal phase, and in the case of
the modes which are polarized along x or y, the Raman
susceptibility tensors can be expressed as

E(x) =
( · · e

· · ·
e · ·

)
, E(y) =

( · · ·
· · e
· e ·

)
, (14)

whereas for the BaTiO3 rhombohedral phase, these tensors
become

E(x) =
( · e f

e · ·
f · ·

)
, E(y) =

( e · ·
· −e f
· f ·

)
.

(15)
The method presented in section 2.2 to compute the Raman
spectra gives no information about the shape or the width of
the Raman lines mainly because the electron–phonon coupling
is not taken into account within the formalism used. Thus, for
all the calculated Raman spectra shown in the following, the
Raman lineshape is assumed to be Lorentzian and the linewidth
is fixed at 4 cm−1. Note that the experimental data are generally
obtained at room temperature, whereas the theoretical results
account for the temperature only through the statistical Bose
factor.

9.1. Raman spectra of the PbTiO3 tetragonal phase

Figure 3 compares the calculated Raman spectra of the
PbTiO3 tetragonal phase and the experimental ones obtained
for two scattering configurations. The bottom spectra have
been obtained for an x(zz)y scattering configuration in
which the incoming photon has its wavevector along x and
its polarization along z while the scattered photon has its
wavevector along y and its polarization along z. Thus, only
pure A1(TO) modes can be detected in this configuration. The
spectra at the top of figure 3 have been obtained for an x(zx)y
configuration where the wavevector and polarization of the

7
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Figure 3. Theoretical (left) and experimental [30] (right) Raman spectra of PbTiO3 tetragonal phase. The top and the bottom spectra have
been obtained for an x(zx)y and x(zz)y scattering configuration, respectively. In these configurations, only the E(TO) + E(LO) and A1(TO)
modes can be detected, respectively. The experimental spectra are recorded at room temperature.

Table 9. πκ
i j,γ tensor elements of the TO modes (×10−3 Bohr−1) related to the asymmetric unit of the BaTiO3 rhombohedral phase.

γ

κ x y z

Ba

(−10.8 −9.9
10.8

−9.9

) (
10.8

10.8 −9.9
−9.9

) (−10.2
−10.2

−0.1

)

Ti

(
44.9 145.5

−44.9
145.5

) ( −44.9
−44.9 145.5

145.5

) (
188.4

188.4
315.3

)

O1

(
36.5 16.1 −36.0
16.1 40.64 −15.9

−36.0 −15.9 52.1

) (
50.6 20.7 −15.9
20.7 82.9 −54.4

−15.9 −54.4 90.3

) (−57.4 −3.5 28.9
−3.5 −61.4 50.1
28.9 50.1 −105.1

)

incoming photon (scattered photon) are along x and z (y and
x), respectively. Thus, both E(TO) and E(LO) modes can be
detected in this configuration.

As expected, these figures show a relatively good
agreement between the calculated and experimental spectra
of the PbTiO3 tetragonal phase for both the position of the
Raman lines and their intensities. In the case of the E
modes, the LO4 line predicted at 655 cm−1 has the weakest
scattering efficiency. However, it does not even appear on the
experimental spectrum although it is reported in [30] to be
around this frequency.

9.2. Raman spectra of the BaTiO3 tetragonal phase

Figure 4 compares the calculated Raman spectra of the
BaTiO3 tetragonal phase and the experimental ones obtained
for y(zz)ȳ and z(yz)x scattering configurations. In these
configurations, only the A1(TO) and E(TO) modes can be
detected, respectively. As in the case of the PbTiO3 tetragonal
phase, these figures show a very good agreement between the
calculated and experimental spectra for both the frequency
position of the Raman lines and their intensities.

In the case of the A1 modes, the TO2 and TO3 lines
are correctly predicted both in position and relative intensity,

and also have the strongest scattering efficiency. The TO1
line appears weaker on the calculated spectrum than on the
experimental one. However, this effect is not related to the
intrinsic scattering efficiency of the TO1 mode. It is rather a
consequence of the fact that the TO2 line in the experimental
spectrum is quite broad and that it overlaps with the TO1 line,
whereas this is not the case for the calculated spectrum since
we use a constant linewidth to represent the Raman lines.

In the case of the E modes, only the assignment of three
Raman E(TO) modes remains possible since one E mode is
unstable in the harmonic approximation. These three Raman
lines are correctly predicted both in frequency position and
relative intensity. The calculated TO3 line dominates the
spectrum while the intensity of the calculated TO2 line is
weaker than that of the other Raman lines, in agreement with
the experimental data.

9.3. Raman spectra of the BaTiO3 rhombohedral phase

Finally, we have also computed the Raman spectra of the
BaTiO3 rhombohedral phase since only a few theoretical [20]
or experimental [12, 13] studies were devoted to this phase.
Figure 5 displays the calculated Raman intensities of the
A1(TO) and E(TO) modes of the BaTiO3 rhombohedral phase

8
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Figure 4. Theoretical (bottom) and experimental (top) Raman spectra of the BaTiO3 tetragonal phase for y(zz) ȳ and z(yz)x scattering
configurations. In these configurations, only the A1(TO) and E(TO) modes can be detected, respectively. The experimental spectra in the
y(zz) ȳ and z(yz)x configurations are respectively from [42] and [12], and are recorded at room temperature.

for the x(zz)y and z(xy)z̄ configurations, respectively. To
the best of our knowledge, there is no Raman spectrum of
this phase on the monocrystal in the literature. This study
therefore provides benchmark results for future interpretation
of experimental data. We observe that the Raman relative
intensity and frequency position of the A1(TO) lines of the
BaTiO3 rhombohedral phase are very close to those observed
and calculated for its tetragonal phase. Similarly, the frequency
position and relative intensity of the E(TO1), E(TO2) and
E(TO4) lines show the same agreement. Nevertheless, the
E(TO3) line predicted at 293 cm−1, absent in the BaTiO3

tetragonal phase, is a Raman fingerprint of the rhombohedral
phase.

10. Discussion

It is usual to use the atomic polarizability concept when
modeling the dielectric susceptibility. Within this concept,
the dielectric susceptibility of a crystal is decomposed into
individual atomic polarizability contributions. It can therefore
be questioned whether the Raman susceptibility can be
similarly decomposed into contributions from individual atoms
in an ionic material, and to which extent these elements can be
transferred from one material to another.

Such a decomposition is performed in equation (6),
expressing the Raman susceptibility as a sum of individual
atomic contributions proportional to π . However, inspection of
table 7 shows that the same atoms in two different compounds

Figure 5. Theoretical Raman spectra of the BaTiO3 rhombohedral
phase for x(zz)y and z(xy)z̄ scattering configurations. In these
configurations, only the A1(TO) and E(TO) modes can be detected,
respectively.

within the same structure and symmetry can exhibit strongly
different π . This therefore demonstrates that the computation
of individual π tensorial elements is required for each system
and that empirical models that would base the computation of
the Raman susceptibility on the transfer of the π elements of
specific atoms from one material to another would behave very
poorly in ferroelectric materials.

9



J. Phys.: Condens. Matter 21 (2009) 215901 P Hermet et al

11. Conclusions

In this paper, we have calculated, for the first time, the
derivative of the linear optical susceptibility with respect to
atomic displacement and the second-order nonlinear optical
susceptibility tensors of the ferroelectric BaTiO3 and PbTiO3

in their tetragonal phases, and the ferroelectric rhombohedral
phase of BaTiO3. These quantities are found to be in good
agreement with the available experimental data, leading to an
accurate calculation of the Raman spectra of these materials for
different experimental configurations. The calculated Raman
spectra of the BaTiO3 rhombohedral phase have also been
reported for the first time.

The computation of the Raman scattering intensities has
been performed not only for the transverse optical modes,
but also for the longitudinal optical ones. The agreement
between the measured Raman spectra of these prototypical
ferroelectrics and the DFT ones is remarkable both for the
frequency position and the intensity of the Raman lines.
DFT, taking advantage of a recent implementation based on
the nonlinear response formalism and the 2n + 1 theorem,
appears as an efficient tool to calculate the Raman spectra of
ferroelectric materials, and thus make reasonable predictions
on the assignment of their Raman lines.

Finally, this agreement presently demonstrates the state-
of-the-art in the computation of Raman responses via the
nonlinear formalism on one of the most complex systems,
ferroelectrics, and constitutes a step forward in a reliable
prediction of their electro-optical responses.
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